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The formulation and implementation of wavelet based methods for the solution of
multi-dimensional partial differential equations in complex geometries is discussed.
Utilizing the close connection between Daubechies wavelets and finite difference
methods on arbitrary grids, we formulate a wavelet based collocation method, well
suited for dealing with general boundary conditions and nonlinearities. To circum-
vent problems associated with completely arbitrary grids and complex geometries we
propose to use a multi-domain formulation in which to solve the partial differential
equation, with the ability to adapt the grid as well as the order of the scheme within
each subdomain. Besides supplying the required geometric flexibility, the multi-
domain formulation also provides a very natural load-balanced data-decomposition,
suitable for parallel environments. The performance of the overall scheme is illus-
trated by solving two dimensional hyperbolic problems.c© 1998 Academic Press

1. INTRODUCTION

The ability of wavelets to accurately and efficiently represent functions with localized
features [1–3] has spawned intensive research into applying wavelets for the solution of
partial differential equations with the promise of significantly reducing the necessary compu-
tational effort and memory requirements. Traditionally, this effort has been centered around
using wavelets as an orthogonal and complete basis, spanning a space in which to seek
approximate solutions satisfying the equation in a Galerkin sense [4–6]. Besides the well
known difficulties associated with such an approach for nonlinear problems, one is also
faced with the problem of dealing with non-trivial boundary conditions in an accurate and
stable manner.

Such restrictions on the applicability of wavelet based methods for the solution of prob-
lems of more general interest have, in recent years, induced significant interest into grid-
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based collocation wavelet methods, with various different approaches being taken [4, 6–9].
The formulation and implementation of multi-dimensional pure wavelet collocation meth-
ods, however, remains a challenging task and many issues require attention.

In the present work we take a somewhat different approach to arrive at a grid-based method
utilizing the unique properties of wavelets. Rather than using the wavelets as a basis, we
utilize the ability of wavelets to not only detect the existence of high-frequency information
but also to supply information about the spatial location of such strongly inhomogeneous
regions. Such a region would, in the Galerkin formulation, require one to use many wavelet
coefficients while, within a collocation formulation, such information would indicate the
need for a very fine grid.

The gap between wavelets and finite difference schemes may seem rather large. However,
a very close connection between these two issues has recently been established in a series of
papers [10–12] in which it has been advocated that wavelets should be used for grid gener-
ation and order selection only, while the scheme for solving the partial differential equation
is based solely on finite difference schemes defined on variable grids. In particular, as we
shall discuss in some detail shortly, the differentiation operators associated with wavelet
based collocation methods are in some cases equivalent to operators appearing from variable
grid finite difference operators [13, 14]. This suggests that the wavelet analysis provides
the information required to construct adaptive finite difference schemes on arbitrary grids
with the error estimation being based on the wavelet analysis. Using this finite difference
interpretation immediately alleviates the problems associated with nonlinear terms and, to
some extend, with arbitrary boundary conditions through the use of one-sided finite differ-
ence schemes. We shall return to this very fruitful connection between collocation wavelet
methods and finite difference schemes in the following section.

Let us, however, for a minute simply claim that wavelets provide the proper tool for the
formulation of adaptive, arbitrary grid finite difference schemes and consider the difficulties
associated with taking such an approach. Besides the obvious difficulties associated with
implementing an arbitrary grid and order multi-dimensional finite difference method, finite
difference schemes defined on arbitrary grids are known to introduce numerical artifacts
[7, 6], resulting in an amplification of numerical noise and, as a consequence, they make
coarsening in smooth regions of the solution a less than trivial task, in particular when
considering the use of high-order methods. Moreover, it is well known that wavelets are
best suited for application on equidistant grids which, for problems beyond one dimension,
suggests a tensor-product approximation. This, on the other hand, makes the application of
such methods hard for problems in complex domains.

The requirement for a somewhat structured grid, while maintaining the need for geomet-
ric flexibility, points towards the introduction of a multi-domain formulation as the proper
way of progressing. Indeed, as has been realized over the last decade within the community
of spectral methods [15–17], multi-domain methods alleviate many of the problems associ-
ated with the use of high order methods in complex geometries, while, for many problems,
providing the computationally most efficient framework [18] in which to solve a multitude
of problems of more general interest. In this work, we propose to combine the geomet-
ric flexibility and computational efficiency of a multi-domain scheme with the adaptivity,
facilitated by the wavelet analysis and the associated finite difference operators, to arrive
at a scheme which, as we shall see, circumvents most of the problems discussed above
while, at the same time, providing a very natural data-decomposition and a mechanism for
load-balancing within a parallel framework.
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The remaining part of this paper is organized as follows. In Section 2 we discuss the
relation between finite-difference methods on arbitrary grids and the wavelet decomposition
based on Daubechies wavelets. To extend the wavelet based grid and order adaptation to
multi-dimensional and geometrically complex problems, we find it necessary to introduce
a minimum amount of structure into the global grid. These issues are addressed in Section 3
where we propose to combine the wavelet analysis with a multi-domain formulation such
as to alleviate various problems hitherto associated with wavelet based methods. Examples
of the performance of the scheme for solving pure wave problems is also included, while
Section 4 contains a few concluding remarks.

2. FROM WAVELETS TO FINITE-DIFFERENCE METHODS

In the following we shall discuss various aspects of the relation between collocation
wavelet methods and finite-difference schemes to arrive at a proper understanding and
formulation of wavelet based methods for the solution of partial differential equations. We
shall also address the issue of computational efficiency of such wavelet optimized finite-
difference methods and compare them to traditional compression based schemes.

2.1. Wavelets and Relations

Let us, however, first recall a few fundamental properties of wavelets, essential for the
subsequent discussion.

The term wavelet is used to describe a spatially localized function, i.e., the wavelet is
assumed to have compact support or most of the energy of the wavelet is contained in a
very narrow region of the physical space. We shall restrict the attention to wavelets having
compact support and focus only on the family defined by Daubechies [19, 2].

To define the Daubechies wavelets, consider the two functions,φ(x) andψ(x), appearing
as solutions to the equations

φ(x) =
√

2
L−1∑
k=0

hkφ(2x − k), (1)

ψ(x) =
√

2
L−1∑
k=0

gkφ(2x − k), (2)

with φ(x) being normalized as ∫ ∞
−∞

φ(x) dx = 1.

Let

φ
j
k (x) = 2−

j
2φ(2− j x − k), ψ

j
k (x) = 2−

j
2ψ(2− j x − k),

where j, k∈ Z denote the dilations and translations of the scaling function,φ
j
k (x), and the

wavelet,ψ j
k (x), respectively.

The sets,H ={hk}L−1
k=0 andG={gk}L−1

k=0 , are related asgk= (−1)khL−1−k for k= 0, . . . ,
L − 1. Furthermore,H andG are chosen so that dilations and translations of the wavelet,
ψ

j
k (x), form an orthonormal basis onL2(R) and such that the mother wavelet,ψ(x), has
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M = L/2 vanishing moments. In other words,ψ j
k (x) satisfies

δklδ jm =
∫ ∞
−∞

ψ
j

k (x)ψ
m
l (x) dx, (3)

whereδkl is the Kronecker delta function, and the mother wavelet,ψ(x)=ψ0
0(x), satisfies

∀m ∈ [0, . . . ,M − 1],
∫ ∞
−∞

ψ(x)xm dx= 0. (4)

It is usual to let the spaces spanned byφ
j
k (x) andψ j

k (x) over the parameterk, with j fixed,
be denoted byVj andWj , i.e.,

Vj = span
{
φ

j
k (x)

}
k∈Z
, Wj = span

{
ψ

j
k (x)

}
k∈Z
.

These spaces,Vj andWj , are related as [19]

. . . ⊂V1 ⊂ V0 ⊂ V−1 ⊂ . . . ,

and

Vj = Vj+1⊕Wj+1,

i.e., Wj+1 is the orthogonal complement ofVj+1 in Vj . Utilizing orthonormality of the
wavelets,ψ j

k , we obtain the important statement

L2(R) =
⊕
j∈Z

Wj , (5)

i.e., the wavelet basis is complete. Hence, anyf (x)∈ L2(R) can be written as

f (x) =
∑
j∈Z

∑
k∈Z

d j
kψ

j
k (x), (6)

with the set of expansion coefficients,{djk}, appearing as a result of orthogonality

d j
k =

∫ ∞
−∞

f (x)ψ j
k (x) dx, (7)

while the decay of the expansion coefficients depends solely on the local regularity off (x)as∣∣d j
k

∣∣ ≤ C2− j L+1
2 max
ξ∈[k2− j ,(k+M−1)2− j ]

∣∣ f (M)(ξ)
∣∣. (8)

From Eq. (8) we find that iff (x) behaves like a polynomial of order less thanM inside
the small interval, thend j

k vanishes exactly. Iff (M) differs from zero, it will nevertheless
decay exponentially with the scale parameter,j . Indeed, the information given by Eq. (8) is
of very local character and isolated strong gradients do not ruin the decay away from such
features, a scenario much different from expansions based on polynomials, see, e.g., [15].
Thus, by considering the magnitude ofd j

k one obtains a local measure of the variation of
the function, an observation crucial to the remaining part of this work.

Naturally, infinite sums and integrals are meaningless when one begins to implement a
wavelet expansion on a computer and we must limit the range of the scale parameterj and
the location parameterk.
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In the wavelet expansion, Eqs. (6)–(7), functions with arbitrarily small-scale structures
can be represented. In practice, however, there is a limit to how small the smallest structure
can be depending on, e.g., the numerical grid resolution or the sampling frequency in a
signal processing scenario. Hence, on a computer an approximation would be constructed
in a finite space such as

V0 = W1⊕W2⊕ . . .⊕WJ ⊕ VJ,

with the approximation being

PV0 f (x) =
∑
k∈Z

sJ
k φ

J
k (x)+

J∑
j=1

∑
k∈Z

d j
kψ

j
k (x), (9)

with

d j
k =

∫ ∞
−∞

f (x)ψ j
k (x), sJ

k =
∫ ∞
−∞

f (x)φ J
k (x),

utilizing orthogonality. Within this expansion, the scalej = 0 is arbitrarily chosen as the
finest scale required, and scaleJ would be the scale at which a kind of local average,φ J

k (x),
provides sufficient large scale information, i.e., the first term in Eq. (9) provides the local
mean around which the function oscillates.

One must also limit the range of the location parameter,k. Assuming periodicity off (x)
implies periodicity on all wavelet coefficients,sj

k andd j
k , with respect tok. For the non-

periodic case, sincek is directly related to the location, a limit is imposed on the values of
k when the location being addressed extends beyond the boundaries of the domain.

The number of vanishing moments,M , of the wavelet,ψ(x), defines the accuracy of
approximation. For Daubechies wavelets,DL , the number of elements inH andG, or the
length of the filtersH andG, denoted byL, is related to the number of vanishing moments
M by 2M = L. Moreover,L also reflects the support of the wavelet, i.e., smallL implies
narrow local support.

The famous Haar wavelet, which also enters asD2, is arrived at by definingH ash0=
h1= 1. For this filter,H , the solution to the dilation equation, Eq. (1),φ(x), is the box
function

φ(x) =
{

1, x ∈ [0, 1]
0, otherwise.

While the Haar function is very useful as a learning tool it is not very useful as a basis
function for solving partial differential equations since it is discontinuous.

The filter coefficients,H , needed to define compactly supported wavelets with a higher
degree of regularity can be found in [19]. As expected, the regularity increases with the
support of the wavelet.

2.2. Wavelet Differentiation and Finite Difference Grid Adaptation

In the following we shall show that Daubechies-based wavelet methods, when considered
in physical space, are equivalent to explicit finite difference methods with local grid refine-
ment. In a Daubechies wavelet method the refinement is accomplished by adding wavelet
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basis functions,d j
k , in Eq. (9), in regions where structure exists corresponding to the scale

of the wavelet used for analysis. Structure can be thought of as regions of the domain where
the function being analyzed has non-zero values. On the other hand, in a finite difference
method refinement is accomplished by adding grid points in regions chosen according to
some error estimator.

We argue that since wavelet methods correspond to central finite difference operators
when the grid is uniform [7, 13], and since wavelet methods contain a natural and effortless
mechanism for increased local resolution, wavelets, or rather the magnitude of the wavelet
coefficients,d j

k , supplies the sought after local error estimator. Hence, the wavelet coeffi-
cients play an indirect role only, while the computational kernel is based solely on the use of
finite difference operators on non-uniform grids, while boundary conditions are imposed in
a way similar to that of finite difference operators through the use of one-sided differences.
Moreover, there is no longer a difficulty with nonlinear terms requiring constant transfor-
mation between the physical space and the coefficient space since all calculations are done
in the physical space.

However, to realize that this is indeed the most beneficial use of the wavelet expansions,
we shall need to take a deeper look at the computation of derivatives using wavelet expan-
sions. We shall arrive at this result through a number of steps, starting with the construction
of the wavelet decomposition matrix and the relation between finite difference schemes and
the derivative ofD4 approximations of periodic functions. A final argument for this particu-
lar use of wavelet expansions shall be emphasized in terms of a discussion of computational
complexity of a wavelet Galerkin scheme compared to that of the wavelet optimized finite
difference scheme.

2.2.1. Wavelet and Finite Difference Derivatives

The wavelet decomposition matrix is the matrix embodiment of the dilation equation,
Eq. (1), defining the scaling function and the accompanying equation defining the wavelet,
Eq. (2). The following two recurrence relations for the coefficients,sj

k andd j
k , in Eq. (9)

are given as

sj
k =

L∑
n=1

hnsj−1
n+2k−2, d j

k =
L∑

n=1

gnsj−1
n+2k−2,

as obtained from Eqs. (1)–(2), and we recall thathn refers to the chosen filter while we have
gn=−(−1)nhL−n.

Denote the decomposition matrix embodied by these two equations, assuming periodic-
ity, by P j, j+1

N where the matrix subscript denotes the size of the square matrix while the
superscripts indicate thatP is decomposing from scaling function coefficients at scalej to
scaling function and wavelet function coefficients at scalej + 1, i.e.,P j, j+1

N mapssj onto
sj+1 andd j+1,

P j, j+1
N : [sj ] →

[
sj+1

d j+1

]
, (10)

where we bysj refer to the vector containing the coefficients at scalej . Note that the vectors
at scalej + 1 are half as long as the vectors as scalej .

Suppose, for illustration, the wavelet being used is the four coefficientD4 wavelet, and
that one wants to project from 8 scaling function coefficients at scalej to 4 scaling function
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coefficients at scalej + 1 and 4 wavelet coefficients at scalej + 1. The decomposition
matrix, P j, j+1

8 , thus becomes

P j, j+1
8 ≡



h1 h2 h3 h4 0 0 0 0
0 0 h1 h2 h3 h4 0 0
0 0 0 0 h1 h2 h3 h4

h3 h4 0 0 0 0 h1 h2

g1 g2 g3 g4 0 0 0 0
0 0 g1 g2 g3 g4 0 0
0 0 0 0 g1 g2 g3 g4

g3 g4 0 0 0 0 g1 g2


, (11)

where the periodicity is reflected in the coefficients being wrapped around.
While the wavelet decomposition itself plays an important role in areas like data com-

pression and analysis, we recall that the key point in utilizing wavelets for the solution of
partial differential equations is the evaluation of derivatives

Let the four matrices,Aj
N, B j

N,C
j
N , and Rj

N [13, 20] contain the derivative projection
coefficients,

Aj
N : d j → d́ j , B j

N : sj → d́ j ,

C j
N : d j → śj , Rj

N : sj → śj ,

whereśj andd́ j denote the coefficients of the expansion of the derivative of the function
which is initially defined by the expansion coefficientssj andd j , i.e., the approximation to
the derivative off (x) is obtained by usinǵsj andd́ j in the wavelet expansion, Eq. (9).

While the exact form of the matricesAj
N, B j

N , andC j
N is less important at this point,

this is not so for the matrixRj
N . Indeed, it is always a finite difference operator. For theD4

waveletRj
N corresponds exactly to the optimal central 4th order finite difference operator on

an equidistant grid. For higher order wavelets,D6, D8, etc.,Rj
N remains a finite difference

operator, but is non-optimal in the sense of having more than minimum support for a given
accuracy. The numerical values of the entries are given in [20], e.g., for theD4 wavelet,
Rj

N , is given as

Rj
8 =

1

12



0 8 −1 0 0 0 1 −8
−8 0 8 −1 0 0 0 1

1 −8 0 8 −1 0 0 0
0 1 −8 0 8 −1 0 0
0 0 1 −8 0 8 −1 0
0 0 0 1 −8 0 8 −1
−1 0 0 0 1 −8 0 8

8 −1 0 0 0 1 −8 0


,

which we immediately recognize as the 4th order centered finite difference approximation
to the first derivative.

One can calculate the derivative of a wavelet expansion at any level in the wavelet
decomposition. Let us first examine the entire process of going from point values in the
physical space to scaling function coefficients inV0, differentiating, and finally returning
to point values of the differentiated function in the physical space. Suppose that a periodic
function, f (x), has been approximated on a equidistant grid using 16 scaling function
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coefficients to gets0. The exact procedure by which we obtains0 is less important at this
point and a number of quadrature formulas is available for this purpose. For simplicity we
shall assume that

s0 = Q16f,

wheref represents the grid points vector off (x) andQN represents the matrix formulation
of the chosen quadrature formula of orderN. We recall thatQN is an invertible transfor-
mation and is represented by a circular matrix for periodic problems [13]. Note also that
periodicity of f (x) induces periodicity on the coefficientss0.

To differentiate the samples off (x) at the grid points using a 4th order central finite
difference operator,D f d4, we apply

f́ = D f d4f. (12)

On the other hand, the scaling function coefficients,ś0, for the approximation to the deriva-
tive in V0 is given as

ś0 = 1

1x
R0

16s0 = 1

1x
R0

16Q16f.

Now, returning to the physical space we get

f́ = Q−1
16 Q16

1

1x
R0

16f =
1

1x
R0

16f,

since theQN as well asR0
N are circular and thus commute, and we recover Eq. (12) since

D f d4 ≡ 1

1x
R16.

Hence, under the assumption of periodicity and without data compression we recover thatD4

wavelet differentiation corresponds exactly to centered 4th order finite differencing. The case
for differentiation based on higher order wavelets, e.g.,D6 or D8, is less obvious in that we
do not exactly recover the minimum width stencil. However, the close connection between
wavelet differentiation and finite difference differentiation remains a valid observation.

Data compression is the goal of any wavelet method. In coefficient space, compression
is facilitated by introducing a threshhold value below which all wavelet coefficients are
assumed to vanish, thereby reducing the dimension of the problem. In physical space, the
embodiment of data compression is a non-uniform grid, i.e., the grid must be dense in
regions where high gradients require fine resolution while the grid can be sparse in areas of
slow variation.

To see how the wavelet analysis yields the information to properly choose the appropriate
grid in the physical space, let us consider the first decomposition ofV0=W1⊕V1 in which
data compression can be achieved.

As in V0, we have 16 basis functions, but now the subspaceV0 is decomposed into low
frequency,V1, and high frequency,W1, components asV0=V1⊕W1, utilizing the trans-
formation in Eq. (10) withj = 0. To calculate the coefficients for the derivative expansion
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in V1⊕W1 we apply the projection[
ś1

d́1

]
= 1

21x

[
R1

8 C1
8

B1
8 A1

8

][
s1

d1

]
. (13)

If one now applies the matrix(P0,1
16 )

T (T denotes transpose and hence inverse for this unitary
matrix) to the derivative coefficients at scalej = 1 one gets

[ś0] = (P0,1
16

)T
[

ś1

d́1

]
,

to arrive at exactly the same coefficients as before when the matrixR0
16 was applied tos0.

Now suppose thatf (x) is smooth enough such that a grid of eight points resolves the
function to a certain desired accuracy, i.e., the elements ofd́1 are all below a certain thresh-
hold and consequently assumed to be zero. Hence, only the scaling function coefficients
need to be included in the computation ofś0, thereby reducing the problem since Eq. (13)
becomes

ś1 = 1

21x
R1

8s1,

while also the reconstruction ofś0 is being reduced.
Let us now see how this all relates to the issue of adaptive finite difference schemes. If,

indeed, f (x) is smooth enough such that 8 grid points resolve the function to the desired
level of accuracy, then we may definef2 to be the 8 element vector containing every other
entry of the 16 element vectorf and compute the 4th order derivative off as

f́2 = 1

21x
R1

8f2,

which is equivalent to the computation of the derivative using onlyś1 as discussed earlier.
Hence, if we work only inV0 the wavelet differentiation, based onD4, is equivalent to

a 4th order finite differencing with a grid spacing of1x, while when working only inV1

we arrive at a 4th-order finite differencing with a grid spacing of 21x. However, the two
subspaces,V0 andV1, are related byV0=V1⊕W1, and the subspace,W1, contains basis
functions which are locally oscillatory and compactly supported. An inner product of this
basis with f (x) will detect local oscillations inf (x) and provide exactly the information
necessary to refine the grid locally from 21x to1x. Moreover, this wavelet analysis can be
used not only to add wavelet basis functions where one has a large inner product but also to
refine the physical grid in the same region and at a scale corresponding to the wavelet scale
and, thus, adapt the grid according to the variation of the function.

2.2.2. Computational Efficiency—A Comparison

One of the most compelling reasons for maintaining the pure wavelet formulation is the
ease by which data compression can be applied as has so successfully been done in, e.g.,
signal analysis and picture manipulation. The situation, however, is entirely different when
considering the solution of partial differential equations, where, as we shall see shortly, it
is questionable whether one gains anything by maintaining the pure wavelet formulation as
compared to the grid point formulation advocated here.

To illustrate this point when computing derivatives of compressed data inW1⊕V1, let
us explicitly build the relevant matrices and observe the action of each element.
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Consider the Haar wavelet in which there are two non-zero low-pass filter elements and
two nonzero high-pass filter elements. The wavelet decomposition matrix, projecting from
the scaling function coefficients on the finest scale to the scaling function coefficients and
wavelet coefficients on the next coarser scale, is

s2
1

s2
2

s2
3

s2
4

d2
1

d2
2

d2
3

d2
4


=



h1 h2 0 0 0 0 0 0

0 0 h1 h2 0 0 0 0

0 0 0 0 h1 h2 0 0

0 0 0 0 0 0 h1 h2

g1 g2 0 0 0 0 0 0

0 0 g1 g2 0 0 0 0

0 0 0 0 g1 g2 0 0

0 0 0 0 0 0 g1 g2





s1
1

s1
2

s1
3

s1
4

s1
5

s1
6

s1
7

s1
8


.

Assume now that the data are represented by the basis functions inW1⊕V1 and let us
observe the elements in the matrix which maps to the approximate derivative of this data
on the form given by Eq. (13) as

s′11
s′12
s′13
s′14
s′15
s′16
s′17
s′18




d′11
d′12
d′13
d′14
d′15
d′16
d′17
d′18



=



r2 r3 0 0 0 0 0 r1 c2 c3 0 0 0 0 0 c1

r1 r2 r3 0 0 0 0 0 c1 c2 c3 0 0 0 0 0

0 r1 r2 r3 0 0 0 0 0 c1 c2 c3 0 0 0 0

0 0 r1 r2 r3 0 0 0 0 0 c1 c2 c3 0 0 0

0 0 0 r1 r2 r3 0 0 0 0 0 c1 c2 c3 0 0

0 0 0 0 r1 r2 r3 0 0 0 0 0 c1 c2 c3 0

0 0 0 0 0 r1 r2 r3 0 0 0 0 0 c1 c2 c3

r3 0 0 0 0 0 r1 r2 c3 0 0 0 0 0 c1 c2

b2 b3 0 0 0 0 0 b1 a2 a3 0 0 0 0 0 a1

b1 b2 b3 0 0 0 0 0 a1 a2 a3 0 0 0 0 0

0 b1 b2 b3 0 0 0 0 0 a1 a2 a3 0 0 0 0

0 0 b1 b2 b3 0 0 0 0 0 a1 a2 a3 0 0 0

0 0 0 b1 b2 b3 0 0 0 0 0 a1 a2 a3 0 0

0 0 0 0 b1 b2 b3 0 0 0 0 0 a1 a2 a3 0

0 0 0 0 0 b1 b2 b3 0 0 0 0 0 a1 a2 a3

b3 0 0 0 0 0 b1 b2 a3 0 0 0 0 0 a1 a2





s1
1

s1
2

s1
3

s1
4

s1
5

s1
6

s1
7

s1
8




d1
1

d1
2

d1
3

d1
4

d1
5

d1
6

d1
7

d1
8



.

Note that in going from the space of uniform scaling functions at the finest scale,V0, to a
space of the same dimension,W1⊕V1, the number of non-zero entries in the “differentiation
matrix” has doubled. Of course, we have not yet compressed the data, but even with very
good compression may the larger number of entries in the differentiation matrix well cancel
out any benefit obtained by compression.

Now let us commence with compression. The following represents the coefficients in
the various spaces beginning with non-compressed uniformly spaced scaling functions, and
proceeding to a hypothetical compressed set of coefficients. Note that this compression has
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reduced the dimension of the space from 16 to 10 as

s0
1

s0
2

s0
3

s0
4

s0
5

s0
6

s0
7

s0
8

s0
9

s0
10

s0
11

s0
12

s0
13

s0
14

s0
15

s0
16



P0,1
16× 16−→



s1
1

s1
2

s1
3

s1
4

s1
5

s1
6

s1
7

s1
8




d1
1

d1
2

d1
3

d1
4

d1
5

d1
6

d1
7

d1
8



Compress−→



s1
1

s1
2

s1
3

s1
4

s1
5

s1
6

s1
7

s1
8




0

0

0

d1
4

d1
5

0

0

0



.

We optimize the differentiation matrix by equating to zero every entry in the matrix which is
not needed for differentiation in this compressed space, resulting in the compressed matrix
and data on the form

s′11
s′12
s′13
s′14
s′15
s′16
s′17
s′18




0

0

0

d′14
d′15
0

0

0



=



r2 r3 0 0 0 0 0 r1 0 0 0 0 0 0 0 0

r1 r2 r3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 r1 r2 r3 0 0 0 0 0 0 0 c3 0 0 0 0

0 0 r1 r2 r3 0 0 0 0 0 0 c2 c3 0 0 0

0 0 0 r1 r2 r3 0 0 0 0 0 c1 c2 0 0 0

0 0 0 0 r1 r2 r3 0 0 0 0 0 c1 0 0 0

0 0 0 0 0 r1 r2 r3 0 0 0 0 0 0 0 0

r3 0 0 0 0 0 r1 r2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 b1 b2 b3 0 0 0 0 0 0 a2 a3 0 0 0

0 0 0 b1 b2 b3 0 0 0 0 0 a1 a2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





s1
1

s1
2

s1
3

s1
4

s1
5

s1
6

s1
7

s1
8




0

0

0

d1
4

d1
5

0

0

0



.

Let us now simply count required operations and memory needed to complete the com-
putation. Beginning with the non-compressed case, where all operations are performed in
V0, i.e., at the finest possible scale, we count operations as 96= 6× 16 and the storage
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requirements are 3+ 16+ 16 for the circulant differentiation matrix, the vector of data and
the vector of differentiated data.

Following the compression, the operations can be counted as 40 multiplies, while the
memory requirements are 20 for the vectors of data and differentiated data with the differ-
entiation matrix requiring 3× 4 memory locations yielding a total storage requirement of
32. Note that the non-compress data require 35 memory locations.

Indeed, in terms of memory we have gained only a little by using the compressed data
while some advantage may appear to be found in reduced operation count. However, one
should keep in mind that the increased complexity of any software which would efficiently
implement the above compressed differentiation would be quite significant, questioning
the usefulness of pure wavelet methods for the solution of partial differential equations.
Moreover, these observations become even more striking when considering more general
representations as in, e.g.,W1⊕W2⊕V2, being a more interesting situation. However, as
more and more wavelet decompositions are taken, the differentiation matrix becomes less
and less sparse. Although also offering a greater potential for compression when using more
levels of the wavelet decomposition, it becomes increasingly difficult to take advantage of
this in a practical implementation. This is particularly true when considering the use of
wavelets for solving partial differential equations, for which the compression certainly is
time-dependent. Hence, the complexity and decreasing sparseness of the differentiation
operator might well eliminate the effect of compression except in extreme cases.

The situation when using the wavelets only as a diagnostic tool for adaptive grid selec-
tion within an adaptive finite difference framework is entirely different. Not only is the
construction of the differentiation operators trivial, even for arbitrary grids [21], but also
inexpensive. Moreover, the memory usage might easily be controlled through the use of,
e.g., linked lists or dynamic memory allocation when adding or removing grid points as
determined through the wavelet analysis.

2.2.3. From Periodic to Finite Problems

So far we have focused almost entirely on periodic problems, in which case the connection
between wavelets and finite difference schemes is clear and well founded. The jump to
problems defined on finite intervals, however, is straightforward once we have realized that
the proper use of the wavelets is for error control while derivatives are computed using a
finite difference stencil on an arbitrary grid.

Since the wavelet analysis yields purely local information about the function, we simply
apply the analysis throughout the domain with some type of extrapolation at the boundaries.
Since in this work we are using onlyD4 for the analysis this does not cause any significant
problems.

The intervals are closed using one-sided stencils on the actual grid, keeping in mind
that for higher than 4th order methods, care has to be exercised at the boundary to maintain
stability. As described in detail in [11] we use Chebyshev distributed grids when considering
very high order methods. Although the associated grids cease to be uniform the wavelet
analysis remains efficient by considering the grid of a transformed variable [11].

3. A WAVELET BASED MULTI-DOMAIN SCHEME

As we have discussed in some depth in the first part of this paper, there are several advan-
tages in exploiting the close connection between finite-difference methods and wavelets such
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that wavelets are used for selecting grids adaptively while a finite difference methodology
is applied when computing derivatives. Indeed, nonlinear terms and finite computational
domains pose no significant problems since the computation is performed in the physical
space rather than in the transform space.

However, so far we have dealt only with equidistant grids or Chebyshev grids. The natural
multi-dimensional extension of this approach is through the use of tensor products, which
require that the computational domain be diffeomorphic to the unit square/cube, thereby
severely limiting the type of problems for which this approach can be applied.

There are several ways by which to circumvent this restriction, e.g., one may simply
embed the general computational domain into a simple rectangular domain, approximating
the boundaries of the domain through a stair-casing. While this approach works well in
connection with low order finite difference methods, it is well known to cause severe
problems with high-order methods. This, and other reasons that we shall return to shortly,
have prompted us to attempt to combine the high spatial accuracy and adaptivity in simple
domains with the geometric flexibility provided by a multi-domain formulation.

In such a scenario, the geometrically complex computational domain is split into a number
of simple geometric building blocks, e.g., quadrilaterals/hexahedrals, in which a tensor
product formulation can be straightforwardly applied. The advantages of such an approach
are many, in particular in connection with the use of high-order/spectral methods. Among
others, we might mention the very substantial geometric flexibility, the body conforming grid
topology, and the intrinsic parallel nature of such an algorithm. A more detailed discussion
on the advantages, problems, and general methodology of multi-domain schemes can be
found in, e.g., [15–17].

Once we have taken the step of introducing a multi-domain formulation, the ideas of
the previous sections carry directly over domain by domain; i.e., we may now apply the
wavelet analysis and adaptivity within each computational building block in exactly the
same manner as discussed previously and successfully applied for various test cases in [10].

To illustrate the general idea and address in detail a few properties associated with the
wavelet-optimized multi-domain method, let us consider the solution of the linear two-
dimensional wave equation

∂u

∂t
+ ∂u

∂x
+ ∂u

∂y
= 0, (x, y) ∈ [0, 2]2, (14)

whereu= u(x, y, t) and the initial conditions are taken to be a Gaussian pulse of the form

u(x, y, 0) = exp

[
− (x − x0)

2

δ2
x

− (y− y0)
2

δ2
y

]
,

where(x0, y0) signifies the center of the pulse and(δx, δy) the variance alongx and y,
respectively. The exact solution is given by convecting the initial condition with the velocity
(1, 1).

Rather than solving Eq. (14) in one computational domain, we shall employ 16 equally
sized squares to construct the complete computational domain and in each domain we
shall solve the equation on an adaptive grid, however, at this point, maintaining a 4th
order scheme in each subdomains. One can envision grid adaptation within the present
framework in several ways, e.g., full adaptation within each block where the grids within
each block can be completely unstructured or block wise grid adaptation where the grids
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within each block remain regular but may vary between adjacent subdomains. While the
first option certainly appears to be most general, it remains a non-trivial task to imple-
ment such a scheme efficiently in terms of memory and computational resources. Refining
only on a block wise level, a scenario in which the multi-domain decomposition supplies
a coarse-grain skeleton, retains the structure within each domain while allowing for a very
significant degree of adaptation and maintaining an easy and straightforward implementa-
tion.

Wavelets are used to detect regions of the computational domain which contain small
scale structure. The scale of the information in the computational domain is detected by the
magnitude of the wavelet coefficients and the grid density and order are adjusted accordingly.
One should think of wavelets as a tool which is used to keep theL∞ error roughly uniform
throughout the computational domain. Instead of adjusting the grid density and numerical
order at each point, it is done block by block with wavelets playing a guiding role by setting
the appropriate computational parameters, grid density, and order, block by block.

The challenge of multi-domain methods is naturally to ensure that the correct global
solution is arrived at by solving a number of smaller local problems and the construction of
proper patching conditions remains an area of active research. However, it is really beyond
the scope of this work to discuss this issue in detail for several reasons. This topic is, on
one hand, highly problem specific. One the other hand, and more importantly, the adaptive
framework that we have set up here is independent of the specifics of the patching schemes
and the problem being solved, as the wavelet analysis essentially is applied in a signal
analysis approach.

Patching of the scalar wave equation, Eq. (14), is performed simply by passing information
across boundaries along the direction of propagation, i.e., out-flowing information from one
domain enters the adjacent domain as inflow/boundary conditions.

Let us now illustrate the performance of the complete scheme by using a 4th Runge–Kutta
scheme for advancing the solution in time. The initial conditions are given as(x0, y0)= (0, 0)
and δx = δy= 0.5 with N=M = 32 as the resolution in each subdomain. The wavelet
analysis and adaptation is applied at every 50–100 time steps and usually requires as much
time as for the advancement of 1–2 time steps, i.e., there is a potential for a substantial
saving in computational time.

In Fig. 1 we illustrate the adapting grid as time progresses, confirming the ability to
use wavelet analysis within a multi-domain framework, and with considerable savings in
computing time. Indeed, for the very simple problem considered here, comparing the non-
adaptive version with the adaptive computation shows that the latter is close to 3 times faster
while yielding an similar global error. The threshhold of the wavelet analysis for refinement
was set to 10−2 and for coarsening to 10−4, yielding an approximate global error of 10−3.

Let us make a few comments concerning Fig. 1. We note that, as expected, the high grid
density closely follows the pulse while only coarse grids are employed in very smooth re-
gions of the solution. We have also found it beneficiary to ensure that the grid density, which
in this case is allowed to take values of 8,16, and 32 along each direction independently,
jumps by a factor of two only across subdomain boundaries. This provides a mechanism
for signaling between domains that a high gradient entity is approaching from the adjacent
domain, a mechanism necessary to maintain accuracy. Interpolation between subdomains is
performed using local Lagrange interpolation of the same order as the scheme, i.e., 4th order.

As has been noted by several authors [10, 6], it is surprisingly difficult to coarsen behind
a propagating pulse when using one-domain wavelet optimized grid generation. Indeed, if
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FIG. 1. Wavelet optimized multi-domain solution of the scalar wave-equation using 16 domains and a 4th
order scheme in each domain. (a)t = 0.5, (b) t = 1.0, (c) t = 1.5, (d) t = 2.0.

the order of the scheme, wavelet or not, is of 4th order or higher, numerical dissipation is
so low that the numerical noise near the rear of the propagating pulse makes coarsening
difficult. However, in Fig. 1, and in many similar experiments, we observe no such problems
due to the domain by domain adaptivity rather than the very fine scale adaptivity used in
previous work.

The observant reader may at this point begin to wonder why the subdomain grids in Fig. 1
are non-uniform. Indeed, when using a 4th order scheme in each domain there is no reason
a uniform grid could not be used provided it is terminated in a stable manner using a 3rd
order one sided stencil. However, as discussed in [11] there is no reason why one cannot
also adapt the order of the scheme used in each domain, employing high order schemes in
regions with course grids, reflecting smooth solutions, and low order schemes in regions
with great variation and very fine grids. In order to do so, i.e., to use schemes of order
higher than 4, we must however cluster the grids to maintain stability. The error estimator
is found to yield reliable estimates providedL∞ is set to scale with the order of the scheme,
reflecting the higher regularity assumed to exist when using high order schemes.

Adapting in order as well as grid density, yielding results very similar to the test case
discussed above, has, besides the numerical advantages of high-order methods in connec-
tion with long-time integration, the potential of offering a better load-balancing in a parallel
setting as the number of grid points times the order of the scheme, providing an approximate
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measure for the overall work can be kept close to constant. Furthermore, one of the goals
behind any numerical method is to minimize the error for a given computational cost. Fun-
damentally, this means approximating the data effectively with low-order local polynomial
approximations, the error being given by the truncation error. In other words, rough localized
features are approximated most effectively by low order polynomials with a high density
of grid points while smooth large-scale features are approximated most effectively by high
order polynomials on a coarse grid. For this reason, we increase the order of the numerical
method as we decrease the grid point density. In addition to maximizing the computational
efficiency, the work roughly remains constant in all the subdomains.

4. CONCLUDING REMARKS

The purpose of this work has been twofold. In the first part we set out to show the close
connection between differentiation based on the use of Daubechies wavelets and that of
traditional centered finite difference schemes. Indeed, the capability for data compression,
being the main argument for the use of wavelet methods, manifests itself in finite difference
methods as the possibility for the use of variable grid schemes. Hence, we concluded, based
on the above connection as well as a careful discussion of the problems associated with pure
wavelet methods, that the proper way of using the wavelets is for identifying exactly where
to refine and coarsen the computational grids to maintain a given accuracy, while the well
known finite difference framework should be chosen for actually computing derivatives.
Besides the intuitive ease of the grid based approach, it also offers advantages when the
need to deal with boundary conditions or nonlinear terms arises.

Extending the wavelet optimized finite difference methods to multi-dimensional prob-
lems involves the introduction of tensor product grids with the resulting loss of geometric
flexibility. To overcome this, we showed how to use a multi-domain formulation in which
each geometrically simple subdomain is being dealt with in a straightforward extension of
the one-dimensional framework, while the multi-domain setting provides a global skeleton
that makes the implementation less troublesome. As we saw through implementations, the
block adaptivity proposed here yields significant savings even for a problem as simple as the
linear wave equation while eliminating several problems hitherto associated with wavelet
optimized finite difference schemes. Moreover, an order and grid adaptive scheme provides
advantages in terms of load balancing with a parallel setting.

The generalization of the present framework to problems of more complicated character,
i.e., problems of electromagnetics and acoustics, poses no significant algorithmic problems
and we hope to report on such developments in the near future.
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